Seguidores

sexta-feira, 11 de agosto de 2017

MATEMÁTICA Sistema de Equações do 1° e do 2° Grau

Resultado de imagem para equação

MATEMÁTICA   Sistema de Equações do 1° e do 2° Grau 


Um sistema de equações do 1° e do 2° grau pode ser resolvido através dos métodos da substituição ou da adição, podendo gerar até quatro soluções diferentes.



Os sistemas de equações nada mais são do que estratégias que nos permitem resolver problemas e situações que envolvem mais de uma variável e pelo menos duas equações. Se as equações presentes no sistema envolverem apenas a adição e a subtração das incógnitas, dizemos que se trata de um sistema de equações do 1° grau. Podemos resolver esse sistema de duas formas, através da representação gráfica ou algebricamente. Na forma algébrica, dispomos de duas alternativas, o método da adição ou da substituição.

No caso de uma multiplicação entre as incógnitas ou, simplesmente, de uma delas aparecer como uma potência de expoente 2, dizemos que o sistema envolve também equações de 2° grau. Para resolver um sistema desse tipo, as estratégias são as mesmas citadas anteriormente, mas podem haver mais soluções nesse caso.

Vejamos alguns exemplos de resolução de sistemas de equações do 1° e do 2° grau:


1° Exemplo:

Observe que, nesse exemplo, a equação x·y = 15 fornece um produto entre as incógnitas x e y, portanto, essa é uma equação do 2° grau. Para resolvê-la, vamos utilizar o método da substituição. Na segunda equação, isolaremos x:

2x – 4y = – 14
2x = 4y – 14
x = 4y – 14
     2
x = 2y – 7


Agora substituiremos x = 2y – 7 na primeira equação:

x·y = 15
(2y – 7)·y = 15
2y² – 7y – 15 = 0


Para encontrar os possíveis valores de y, utilizaremos a fórmula de Bhaskara:
Δ = b² – 4.a.c
Δ = 12² – 4.17. 0
Δ = 144
y = – b ± √Δ​
     2.a
y = – 12 ± √144
      2.17
y = – 12 ± 12
      34

Y1 = – 12 + 12
         34
y1 = 0
      34
y1 = 0
y2 = – 12 – 12
      34
y2 = – 24
          34
y2 = – 12
         17


Δ = b² – 4.a.c
Δ = (– 7)² – 4.2.(– 15)
Δ = 49 + 120
Δ = 169

y = – b ± √Δ​
      2.a

y = – (– 7) ± √169
       2.2

y = 7 ± 13
     4

y1 = 7 + 13
       4
y1 = 20
       4
y1 = 5
y2 = 7 – 13
      4
y2 = – 6
       4
y2 = – 3
        2

Agora podemos substituir os valores encontrados para y em x·y = 15 com o objetivo de determinar os valores de x:

x1 · y1 = 15
x1 · 5 = 15
x1 = 15
       5
x1 = 3
x2 · y2 = 15
x2 · (– 3) = 15
2
x2 = 15 . (– 2)
              3
x2 = – 10

Podemos afirmar que a equação possui duas soluções do tipo (x, y), são elas: (3, 5) e (– 10, – 3/2).


ara resolver esse sistema, utilizaremos o método da adição. Para tanto, vamos multiplicar a primeira equação por – 2. Nosso sistema ficará da seguinte forma:
(– 2x² + 2x²) + (– 4y² – 3y²) = (– 178 + 150)
0x² – 7y² = – 28
7y² = 28
y² = 28
       7
y = ±√4
y1 = + 2
y2 = – 2
Agora nós podemos substituir os valores encontrados para y na primeira equação com o objetivo de obter os valores de x:
x² + 2y1² = 89
x² + 2.(2)² = 89
x² + 8 = 89
x² = 81
x = ±√81
x1 = + 9
x2 = – 9
x² + 2y2² = 89
x² + 2.(– 2)² = 89
x² + 8 = 89
x² = 81
x = ±√81
x3 = + 9
x4 = – 9
Podemos afirmar que a equação possui quatro soluções: (9, 2), (– 9, 2), ( 9, – 2) e (– 9, – 2).
3° Exemplo: 
Na resolução desse sistema de equações, utilizaremos o método da substituição. Na segunda equação, vamos isolar x:
2x – 3y = 2
2x = 3y + 2
x = 3y + 2
      2
x = 3y + 1
2
Substituiremos x na primeira equação:
x² + 2y² = 1
(3y/2 + 1)² + 2y² = 1
9y² + 3y + 1 + 2y² = 1
4                           
Multiplicaremos toda a equação por 4:
9y² + 12 y + 4 + 8y² = 4
17y² + 12 y = 0
Para encontrar os possíveis valores de y, vamos utilizar a fórmula de Bhaskara:
Δ = b² – 4.a.c
Δ = 12² – 4.17. 0
Δ = 144
y = – b ± √Δ​
     2.a
y = – 12 ± √144
      2.17
y = – 12 ± 12
      34
Y1 = – 12 + 12
         34
y1 = 0
      34
y1 = 0
y2 = – 12 – 12
      34
y2 = – 24
          34
y2 = – 12
         17
Substituindo os valores encontrados para y em 2x – 3y = 2, podemos determinar os valores de x:
2x – 3y1 = 2
2x – 3·0 = 2
2x – 0 = 2
x = 2
2
x1 = 1
2x – 3y2 = 2
2x – 3·(– 12/17)= 2
2x + 36 = 2
 17
2x = 2 – 36
             17
2x = – 2
          17
x2 = – 1
         17
Podemos afirmar que a equação possui duas soluções do tipo (x, y), são elas: (1, 0) e (– 1/17, – 12/17).








Fontes: http://brasilescola.uol.com.br/matematica


Por Amanda Gonçalves

RIBEIRO, Amanda Gonçalves. "Sistema de Equações do 1° e do 2° Grau"; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/sistema-equacoes-1-o-2-o-grau.htm>. Acesso em 11 de agosto de 2017.


Nenhum comentário:

Postar um comentário